
[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[366]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
The Geometric Efficient Matching Algorithm For Firewalls

Priyanka Harish Pachkore*, C.M. Jadhav

Bharat Ratna Indira Gandhi College Of Engineering, Kegoan, Solapur, India

priyankaspophalikar@gmail.com

Abstract
Given a geographic query that is composed of query keywords and a location, a geographic search engine

retrieves documents that are the most textually and spatially relevant to the query keywords and the location,

respectively, and ranks the retrieved documents according to their joint textual and spatial relevance’s to the query.

The lack of an efficient index that can simultaneously handle both the textual and spatial aspects of the documents

makes existing geographic search engines inefficient in answering geographic queries. In this paper, we propose an

efficient index, called IR-tree, that together with a top-k document search algorithm facilitates four major tasks in

document searches, namely, 1) spatial filtering, 2) textual filtering,3) relevance computation, and 4) document ranking

in a fully integrated manner. In addition, IR-tree allows searches to adopt different weights on textual and spatial

relevance of documents at the runtime and thus caters for a wide variety of applications. A set of comprehensive

experiments over a wide range of scenarios has been conducted and the experiment results demonstrate that IR-tree

outperforms the state-of-the art approaches for geographic document searches.

Keywords: Spatial filtering, textual filtering.

Introduction
 The firewall is one of the central

technologies allowing high level access control to

organization networks. Packet matching in firewalls

involves matching on many fields from the TCP and

IP packet header. At least five fields (protocol number,

source and destination IP addresses, and ports) are

involved in the decision which rule applies to a given

packet. With available bandwidth increasing rapidly,

very efficient matching algorithms need to be

deployed in modern firewalls to ensure that the

firewall. Modern firewalls all use “first match” The

firewall rules are numbered from 1 to n, and the

firewall applies the policy (e.g., pass or drop)

associated with the first rule that matches a given

packet. Firewall packet matching is reminiscent of the

well studied packet matching problem.

Purpose : However, there are several crucial

differences which make the problems quite different.

First, unlike firewalls, routers use “longest prefix

match” semantics. Therefore, firewalls require their

own special algorithms.

Literature survey
Literature survey is the most important step

in software development process. Before developing

the tool it is necessary to determine the time factor,

economy n company strength. Once these things arr

satisfied, then next steps is to determine which

operating system and language can be used for

developing the tool. Once the programmers start

building the tool the programmers need lot of external

support. This support can be obtained from senior

programmers, from book or from websites. Before

building the system the above consideration are taken

into account for developing the proposed system.

We have to analysis the Secure computing…

Data centre Security?
1. Professional Security staff utilizing video

surveillance, state of the art intrusion detection

systems, and other electronic means.

2. When an employee no longer has a business need to

access datacenter his privileges to access datacenter

should be immediately revoked.

3. All physical and electronic access to data centers by

employees should be logged and audited routinely.

4. Audit tools so that users can easily determine how

their data is stored, protected, used, and verify policy

enforcement.

Data Location:

When user uses the cloud, user probably won't know

exactly where your data is hosted, what country it will

be stored in?

Data should be stored and processed only in specific

jurisdictions as define by user.

http://www.ijesrt.com/
priyankaspophalikar@gmail.com
http://www.blurtit.com/q876299.html
http://www.blurtit.com/q876299.html
http://www.blurtit.com/q876299.html

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[367]

Provider should also make a contractual commitment

to obey local privacy requirements on behalf of their

customers,

Data-centered policies that are generated when a user

provides personal or sensitive information that travels

with that information throughout its lifetime to ensure

that the information is used only in accordance with

the policy

Backups of Data:

1. Data store in database of provider should be

redundantly store in multiple physical locations.

2. Data that is generated during running of program on

instances is all customer data and therefore provider

should not perform backups.

3. Control of Administrator on Databases.

Data Sanitization:

1. Sanitization is the process of removing sensitive

information from a storage device.

2. What happens to data stored in a cloud computing

environment once it has passed its user’s “use by date”

3.What data sanitization practices does the cloud

computing service provider propose to implement for

redundant and retiring data storage devices as and

when these devices are retired or taken out of service.

Network Security:

1. Denial of Service: where servers and networks are

brought down by a huge amount of network traffic and

users are denied the access to a certain Internet based

service.

2. Like DNS Hacking, Routing Table “Poisoning”,

XDoS attacks

3. QoS Violation: through congestion, delaying or

dropping packets, or through resource hacking.

4. Man in the Middle Attack: To overcome it always

use SSL

5. IP Spoofing: Spoofing is the creation of TCP/IP

packets using somebody else's IP address.

6. Solution: Infrastructure will not permit an instance

to send traffic with a source IP or MAC address other

than its own.

How secure is encryption Scheme:

Is it possible for all of my data to be fully encrypted?

 What algorithms are used?

Who holds, maintains and issues the keys? Problem:

Encryption accidents can make data totally unusable.

Encryption can complicate availability Solution

The cloud provider should provide evidence that

encryption schemes were designed and tested by

experienced specialists.

Information Security:

1. Security related to the information exchanged

between different hosts or between hosts and users.

2. This issues pertaining to secure communication,

authentication, and issues concerning single sign on

and delegation.

3. Secure communication issues include those security

concerns that arise during the communication between

two entities.

4. These include confidentiality and integrity issues.

Confidentiality indicates that all data sent by users

should be accessible to only “legitimate” receivers,

and integrity indicates that all data received should

only be sent/modified by “legitimate” senders.

5. Solution: public key encryption, X.509 certificates,

and the Secure Sockets Layer (SSL) enables secure

authentication and communication over computer

networks.

System analysis
After analyzing the requirements of the task

to be performed, the next step is to analyze the

problem and understand its context. The first activity

in the phase is studying the existing system and other

is to understand the requirements and domain of the

new system. Both the activities are equally important,

but the first activity serves as a basis of giving the

functional specifications and then successful design of

the proposed system. Understanding the properties and

requirements of a new system is more difficult and

requires creative thinking and understanding of

existing running system is also difficult, improper

understanding of present system can lead diversion

from solution.

Analysis Model

The model that is basically being followed is

the WATER FALL MODEL, which states that the

phases are organized in a linear order. First of all the

feasibility study is done. Once that part is over the

requirement analysis and project planning begins. If

system exists one and modification and addition of

new module is needed, analysis of present system can

be used as basic model.

Policies Data

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[368]

The design starts after the requirement

analysis is complete and the coding begins after the

design is complete. Once the programming is

completed, the testing is done. In this model the

sequence of activities performed in a software

development project are: -

 Requirement Analysis

 Project Planning

 System design

 Detail design

 Coding

 Unit testing

 System integration & testing

Here the linear ordering of these activities is critical.

End of the phase and the output of one phase is the

input of other phase. The output of each phase is to be

consistent with the overall requirement of the system.

Some of the qualities of spiral model are also

incorporated like after the people concerned with the

project review completion of each of the phase the

work done. WATER FALL MODEL was being

chosen because all requirements were known

beforehand and the objective of our software

development is the computerization/automation of an

already existing manual working system.

Fig 3.1: Water Fall Model

tudy of the System

Existing System:

In Existing system a PHR system model, there are

multiple owners who may encrypt according to their

own ways, possibly using different sets of

cryptographic keys. Letting each user obtain keys

from every owner who’s PHR she wants to read would

limit the accessibility since patients are not always

online. An alternative is to employ a central authority

(CA) to do the key management on behalf of all PHR

owners, but this requires too much trust on a single

authority (i.e., cause the key escrow problem).

Key escrow (also known as a “fair” cryptosystem) is

an arrangement in which the keys needed to decrypt

encrypted data are held in escrow so that, under certain

circumstances, an authorized third party may gain

access to those keys. These third parties may include

businesses, who may want access to employees'

private communications, or governments, who may

wish to be able to view the contents of encrypted

communications.

Proposed System

We endeavor to study the patient centric, secure

sharing of PHRs stored on semi-trusted servers, and

focus on addressing the complicated and challenging

key management issues. In order to protect the

personal health data stored on a semi-trusted server,

we adopt attribute-based encryption (ABE) as the

main encryption primitive.

Using ABE, access policies are expressed based on the

attributes of users or data, which enables a patient to

selectively share her PHR among a set of users by

encrypting the file under a set of attributes, without the

need to know a complete list of users.

The complexities per encryption, key generation and

decryption are only linear with the number of

attributes involved.

Input & Output Design

Input Design: Input design is a part of overall system

design. The main objective during the input design is

as given below:

To produce a cost-effective method of input.

1 To achieve the highest possible level of accuracy.

2 To ensure that the input is acceptable and

understood by the user.

Output Design: Outputs from computer systems are

required primarily to communicate the results of

processing to users. They are also used to provide a

permanent copy of the results for later consultation.

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[369]

Implementation: Implementation is the stage of the

project when the theoretical design is turned out into a

working system. Thus it can be considered to be the

most critical stage in achieving a successful new

system and in giving the user, confidence that the new

system will work and be effective. The

implementation stage involves careful planning,

investigation of the existing system and it’s constraints

on implementation, designing of methods to achieve

changeover and evaluation of changeover methods.

Interaction Model:

1. Client-driven interventions

Client-driven interventions are the means to protect

customers from unreliable services. For example,

services that miss deadlines or do not respond at all for

a longer time are replaced by other more reliable

services in future discovery operations.

2. Provider-driven interventions

Provider-driven interventions are desired and initiated

by the service owners to shield themselves from

malicious clients. For instance, requests of clients

performing a denial of service attack by sending

multiple requests in relatively short intervals are

blocked (instead of processed) by the service.

System study
Feasibility Study: The feasibility of the

project is analyzed in this phase and business proposal

is put forth with a very general plan for the project and

some cost estimates. During system analysis the

feasibility study of the proposed system is to be carried

out. This is to ensure that the proposed system is not a

burden to the company. For feasibility analysis, some

understanding of the major requirements for the

system is essential. Three key considerations involved

in the feasibility analysis are

ECONOMICAL FEASIBILITY

TECHNICAL FEASIBILITY

SOCIAL FEASIBILITY

 Economical Feasibility: This study is carried out to

check the economic impact that the system will have

on the organization. The amount of fund that the

company can pour into the research and development

of the system is limited. The expenditures must be

justified. Thus the developed system as well within the

budget and this was achieved because most of the

technologies used are freely available. Only the

customized products had to be purchased.

 Technical Feasibility: This study is carried out to

check the technical feasibility, that is, the technical

requirements of the system. Any system developed

must not have a high demand on the available

technical resources. This will lead to high demands on

the available technical resources. This will lead to high

demands being placed on the client. The developed

system must have a modest requirement, as only

minimal or null changes are required for implementing

this system.

 Social Feasibility : The aspect of study is to check

the level of acceptance of the system by the user. This

includes the process of training the user to use the

system efficiently. The user must not feel threatened

by the system, instead must accept it as a necessity.

The level of acceptance by the users solely depends on

the methods that are employed to educate the user

about the system and to make him familiar with it. His

level of confidence must be raised so that he is also

able to make some constructive criticism, which is

welcomed, as he is the final user of the system.

System specifications
Hardware Requirements:

• System : Pentium IV 2.4

GHz.

• Hard Disk : 40 GB.

• Floppy Drive : 1.44 Mb.

• Monitor : 15 VGA Colour.

• Mouse : Logitech.

• Ram : 512 Mb.

Software Requirements:

• Operating system : Windows

XP.

• Coding Language : C#.net

• Data Base : SQL Server

2005

Software environment
Features of .Net : Microsoft .NET is a set of

Microsoft software technologies for rapidly building

and integrating XML Web services, Microsoft

Windows-based applications, and Web solutions. The

.NET Framework is a language-neutral platform for

writing programs that can easily and securely

interoperate. There’s no language barrier with .NET:

there are numerous languages available to the

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[370]

developer including Managed C++, C#, Visual Basic

and Java Script. The .NET framework provides the

foundation for components to interact seamlessly,

whether locally or remotely on different platforms. It

standardizes common data types and communications

protocols so that components created in different

languages can easily interoperate. “.NET” is also the

collective name given to various software components

built upon the .NET platform. These will be both

products (Visual Studio.NET and Windows.NET

Server, for instance) and services (like Passport, .NET

My Services, and so on).

The .Net Framework :The .NET Framework has two

main parts:

1. The Common Language Runtime (CLR).

2. A hierarchical set of class libraries.

The CLR is described as the “execution engine” of

.NET. It provides the environment within which

programs run. The most important features are

1.Conversion from a low-level assembler-style

language, called Intermediate Language (IL), into

code native to the platform being executed on.

2. Memory management, notably including garbage

collection.

3. Checking and enforcing security restrictions on the

running code.

4. Loading and executing programs, with version

control and other such features.

5. The following features of the .NET framework are

also worth description:

Managed Code: The code that targets .NET, and

which contains certain extra

Information - “metadata” - to describe itself. Whilst

both managed and unmanaged code can run in the

runtime, only managed code contains the information

that allows the CLR to guarantee, for instance, safe

execution and interoperability.

Managed Data: With Managed Code comes Managed

Data. CLR provides memory allocation and Deal

location facilities, and garbage collection. Some .NET

languages use Managed Data by default, such as C#,

Visual Basic.NET and JScript.NET, whereas others,

namely C++, do not. Targeting CLR can, depending

on the language you’re using, impose certain

constraints on the features available. As with managed

and unmanaged code, one can have both managed and

unmanaged data in .NET applications - data that

doesn’t get garbage collected but instead is looked

after by unmanaged code.

Common Type System: The CLR uses something

called the Common Type System (CTS) to strictly

enforce type-safety. This ensures that all classes are

compatible with each other, by describing types in a

common way. CTS define how types work within the

runtime, which enables types in one language to

interoperate with types in another language, including

cross-language exception handling. As well as

ensuring that types are only used in appropriate ways,

the runtime also ensures that code doesn’t attempt to

access memory that hasn’t been allocated to it.

Common Language Specification : The CLR

provides built-in support for language interoperability.

To ensure that you can develop managed code that can

be fully used by developers using any programming

language, a set of language features and rules for using

them called the Common Language Specification

(CLS) has been defined. Components that follow these

rules and expose only CLS features are considered

CLS-compliant.

The .NET Class Framework :We will now discuss

about the .NET Class Framework. In conjunction with

the CLR, the Microsoft has developed a

comprehensive set of framework classes, several of

which are shown below:

Since the .NET Class Framework contains literally

thousands of types, a set of related types is presented

to the developer within a single namespace. For

example, the System namespace (which you should be

most familiar with) contains the Object base type,

from which all other types ultimately derive. In

addition the System namespace contains types of

integers, characters, strings, exception handling, and

console I/O’s as well as a bunch of utility types that

convert safely between data types, format data types,

generate random numbers, and perform various math

functions. All applications use types from System

namespace. To access any platform feature, you need

to know which namespace contains the type that

exposes the functionality you want. If you want to

customize the behavior of any type, you can simply

derive your own type from the desired .NET

framework type. The .NET Framework relies on the

object-oriented nature of the platform to present a

consistent programming paradigm to software

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[371]

developers. It also enables you to create your own

namespaces containing their own types, which merge

seamlessly into the programming paradigm. This

greatly simplifies the Software Development. The

table below lists some of the general namespaces, with

a brief description of what the classes in that

namespace is used for:

In addition to the general namespace the .Net Class

Framework offers namespaces whose types are used

for building specific application types. The table

below lists some of the application specific

namespaces:

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[372]

Just-In-Time Compilation (JIT)

The MSIL is the language that all of the .NET

languages compile down to. After they are in this

intermediate language, a process called Just-In-Time

(JIT) compilation occurs when resources are used

from your application at runtime. JIT allows “parts” of

your application to execute when they are needed,

which means that if something is never needed, it will

never compile down to the native code. By using the

JIT, the CLR can cache code that is used more than

once and reuse it for subsequent calls, without going

through the compilation process again.

The figure below shows the JIT Process:

JIT Compilation Process: The JIT process enables a

secure environment by making certain assumptions:

• Type references are compatible with the type being

referenced.

• Operations are invoked on an object only if they are

within the execution parameters for that object.

• Identities within the application are accurate. By

following these rules, the managed execution can

guarantee that code being executed is type safe; the

execution will only take place in memory that it is

allowed to access. This is possible by the verification

process that occurs when the MSIL is Converted into

CPU-specific code. During this verification, the code

is examined to ensure that it is not corrupt, it is type

safe, and the code does not interfere with existing

security policies that are in place on the system.

 Common Language Specification :The CLR

provides built-in support for language interoperability.

To ensure that you can develop managed code that can

be fully used by developers using any programming

language, a set of language features and rules for using

them called the Common Language Specification

(CLS) has been defined. Components that follow these

rules and expose only CLS features are considered

CLS-compliant.

The Class Library : .NET provides a single-rooted

hierarchy of classes, containing over 7000 types. The

root of the namespace is called System; this contains

basic types like Byte, Double, Boolean, and String, as

well as Object. All objects derive from System.

Object. As well as objects, there are value types. Value

types can be allocated on the stack, which can provide

useful flexibility. There are also efficient means of

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[373]

converting value types to object types if and when

necessary. The set of classes is pretty comprehensive,

providing collections, file, screen, and network I/O,

threading, and so on, as well as XML and database

connectivity. The class library is subdivided into a

number of sets (or namespaces), each providing

distinct areas of functionality, with dependencies

between the namespaces kept to a minimum.

Languages Supported By .Net :The multi-language

capability of the .NET Framework and Visual Studio

.NET enables developers to use their existing

programming skills to build all types of applications

and XML Web services. The .NET framework

supports new versions of Microsoft’s old favorites

Visual Basic and C++ (as VB.NET and Managed

C++), but there are also a number of new additions to

the family. Visual Basic .NET has been updated to

include many new and improved language features

that make it a powerful object-oriented programming

language. These features include inheritance,

interfaces, and overloading, among others. Visual

Basic also now supports structured exception

handling, custom attributes and also supports multi-

threading. Visual Basic .NET is also CLS compliant,

which means that any CLS-compliant language can

use the classes, objects, and components you create in

Visual Basic .NET.

Managed Extensions for C++ and attributed

programming are just some of the enhancements made

to the C++ language. Managed Extensions simplify

the task of migrating existing C++ applications to the

new .NET Framework. C# is Microsoft’s new

language. It’s a C-style language that is essentially

“C++ for Rapid Application Development”. Unlike

other languages, its specification is just the grammar

of the language. It has no standard library of its own,

and instead has been designed with the intention of

using the .NET libraries as its own. Microsoft Visual

J# .NET provides the easiest transition for Java-

language developers into the world of XML Web

Services and dramatically improves the

interoperability of Java-language programs with

existing software written in a variety of other

programming languages. Active State has created

Visual Perl and Visual Python, which enable .NET-

aware applications to be built in either Perl or Python.

Both products can be integrated into the Visual Studio

.NET environment. Visual Perl includes support for

Active State’s Perl Dev Kit.

Other languages for which .NET compilers are

available include

 FORTRAN

 COBOL

 Eiffel

C#.NET is also compliant with CLS (Common

Language Specification) and supports structured

exception handling. CLS is set of rules and constructs

that are supported by the CLR (Common Language

Runtime). CLR is the runtime environment provided

by the .NET Framework; it manages the execution of

the code and also makes the development process

easier by providing services.C#.NET is a CLS-

compliant language. Any objects, classes, or

components that created in C#.NET can be used in any

other CLS-compliant language. In addition, we can

use objects, classes, and components created in other

CLS-compliant languages in C#.NET .The use of CLS

ensures complete interoperability among applications,

regardless of the languages used to create the

application.

Constructors and Destructors Constructors are used

to initialize objects, whereas destructors are used to

destroy them. In other words, destructors are used to

release the resources allocated to the object. In

C#.NET the sub finalize procedure is available. The

sub finalize procedure is used to complete the tasks

that must be performed when an object is destroyed.

The sub finalize procedure is called automatically

when an object is destroyed. In addition, the sub

finalize procedure can be called only from the class it

belongs to or from derived classes.

Garbage Collection : Garbage Collection is another

new feature in C#.NET. The .NET Framework

monitors allocated resources, such as objects and

variables. In addition, the .NET Framework

automatically releases memory for reuse by destroying

objects that are no longer in use. In C#.NET, the

garbage collector checks for the objects that are not

currently in use by applications. When the garbage

collector comes across an object that is marked for

garbage collection, it releases the memory occupied by

the object.

 ASP.NET

 XML

WEB SERVICES

Windows

Forms

 Base Class

Libraries

 Common

Language Runtime

 Operating

System

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[374]

Overloading: Overloading is another feature in C#.

Overloading enables us to define multiple procedures

with the same name, where each procedure has a

different set of arguments. Besides using overloading

for procedures, we can use it for constructors and

properties in a class.

Multithreading: C#.NET also supports

multithreading. An application that supports

multithreading can handle multiple tasks

simultaneously, we can use multithreading to decrease

the time taken by an application to respond to user

interaction.

Structured Exception Handling: C#.NET supports

structured handling, which enables us to detect and

remove errors at runtime. In C#.NET, we need to use

Try…Catch…Finally statements to create exception

handlers. Using Try…Catch…Finally statements, we

can create robust and effective exception handlers to

improve the performance of our application.

Objectives of .Net Frame work :The .NET

Framework is a new computing platform that

simplifies application development in the highly

distributed environment of the Internet.

1. To provide a consistent object-oriented

programming environment whether object codes is

stored and executed locally on Internet-distributed, or

executed remotely.

2. To provide a code-execution environment to

minimizes software deployment and guarantees safe

execution of code.

3. Eliminates the performance problems. There are

different types of application, such as Windows-based

applications and Web-based applications.

Structure of a .NET Application

 DLL Hell : DLLs gave developers the ability to create

function libraries and programs that could be shared

with more than one application. Windows itself was

based on DLLs. While the advantages of shared code

modules expanded developer opportunities, it also

introduced the problem of updates, revisions, and

usage. If one program relied on a specific version of a

DLL, and another program upgraded that same DLL,

the first program quite often stopped working.

Microsoft added to the problem with upgrades of some

system DLLs, like comctl.dll, the library used to get

file, font, color and printing dialog boxes. If things

weren't bad enough with version clashes, if you

wanted to uninstall an application, you could easily

delete a DLL that was still being used by another

program. Recognizing the problem, Microsoft

incorporated the ability to track usage of DLLs with

the Registry starting formally with Windows 95, and

allowed only one version of a DLL to run in memory

at a time. Adding yet another complication, when a

new application was installed that used an existing

DLL, it would increment a usage counter. On

uninstall, the counter would be decremented and if no

application was using the DLL, it could be deleted.

That was, in theory. Over the history of Windows, the

method of tracking of DLL usage was changed by

Microsoft several times, as well as the problem of

rogue installations that didn't play by the rules--the

result was called "DLL HELL", and the user was the

victim. Solving DLL hell is one thing that the .NET

Framework and the CLR targeted. Under the .NET

Framework, you can now have multiple versions of a

DLL running concurrently. This allows developers to

ship a version that works with their program and not

worry about stepping on another program. The way

.NET does this is to discontinue using the registry to

tie DLLs to applications and by introducing the

concept of an assembly. On the .NET Platform, if you

want to install an application in the clients place all

you have to do is use XCopy which copies all the

necessary program files to a directory on the client’s

computer. And while uninstalling all you have to do is

just deleting the directory containing the application

and your application is uninstalled.

Metadata: An Assembly is a logical DLL and consists

of one or more scripts, DLLs, or executables, and a

manifest (a collection of metadata in XML format

describing how assembly elements relate). Metadata

stored within the Assembly, is Microsoft's solution to

the registry problem. On the .NET Platform programs

are compiled into .NET PE (Portable Executable) files.

The header section of every .NET PE file contains a

special new section for Metadata (This means

Metadata for every PE files is contained within the PE

file itself thus abolishing the need for any separate

registry entries). Metadata is nothing but a description

of every namespace, class, method, property etc.

contained within the PE file. Through Metadata you

can discover all the classes and their members

contained within the PE file. Metadata describes every

type and member defined in your code in a

Multilanguage form. Metadata stores the following

information:

 Description of the assembly

 Identity (name, version, culture, public key).

 The types that are exported.

 Other assemblies that this assembly depends

on.

 Security permissions needed to run

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[375]

Description of types

 Name, visibility, base class, and interfaces

implemented.

 Members (methods, fields, properties,

events, nested types)

Attributes

 Additional descriptive elements that modify

types and members

 Advantages of Metadata:

Self describing files: CLR modules and assemblies

are self-describing. Module's metadata contains

everything needed to interact with another module.

Metadata automatically provides the functionality of

Interface Definition Language (IDL) in COM,

allowing you to use one file for both definition and

implementation. Runtime modules and assemblies do

not even require registration with the operating

system. As a result, the descriptions used by the

runtime always reflect the actual code in your

compiled file, which increases application reliability.

Language Interoperability and easier component-

based design:

Metadata provides all the information required about

compiled code for you to inherit a class from a PE file

written in a different language. You can create an

instance of any class written in\ any managed language

(any language that targets the Common Language

Runtime) without worrying about explicit marshaling

or using custom interoperability code.

Attributes:

The .NET Framework allows you to declare specific

kinds of metadata, called attributes, in your compiled

file. Attributes can be found throughout the .NET

Framework and are used to control in more detail how

your program behaves at run time. Additionally, you

can emit your own custom metadata into .NET

Framework files through user-defined custom

attributes.

Assembly

Assemblies are the building blocks of .NET

Framework applications; they form the fundamental

unit of deployment, version control, reuse, activation

scoping, and security permissions. An assembly is a

collection of types and resources that are built to work

together and form a logical unit of functionality. An

assembly provides the common language runtime with

the information it needs to be aware of type

implementations. To the runtime, a type does not exist

outside the context of an assembly.

An assembly does the following functions:

 It contains the code that the runtime

executes.

 It forms a security boundary. An assembly is

the unit at which permissions are requested

and granted.

 It forms a type boundary. Every type’s

identity includes the name of the assembly at

which it resides.

 It forms a reference scope boundary. The

assembly's manifest contains assembly

metadata that is used for resolving types and

satisfying resource requests. It specifies the

types and resources that are exposed outside

the assembly.

 It forms a version boundary. The assembly is

the smallest version able unit in the common

language runtime; all types and resources in

the same assembly are versioned as a unit.

 It forms a deployment unit. When an

application starts, only the assemblies the

application initially calls must be present.

Other assemblies, such as localization

resources or assemblies containing utility

classes, can be retrieved on demand. This

allows applications to be kept simple and

thin when first downloaded.

 It is a unit where side-by-side execution is

supported.

 Contents of an Assembly

• Assembly Manifest

• Assembly Name

• Version Information

• Types

• Locale

• Cryptographic Hash

• Security Permissions

Assembly Manifest

Every assembly, whether static or dynamic, contains a

collection of data that describes how the elements in

the assembly relate to each other. The assembly

manifest contains this assembly metadata. An

assembly manifest contains the following details:

• Identity. An assembly's identity consists of three

parts: a name, a version number, and an optional

culture.

• File list. A manifest includes a list of all files that

make up the assembly.

•Referenced assemblies. Dependencies between

assemblies are stored in the calling assembly's

manifest. The dependency information includes a

version number, which is used at run time to ensure

that the correct version of the dependency is loaded.

•Exported types and resources. The visibility

options available to types and resources include

"visible only within my assembly" and "visible to

callers outside my assembly."

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[376]

•Permission requests. The permission requests for an

assembly are grouped into three sets:

1) Those required for the assembly to run,

2) Those that are desired but the assembly will still

have some functionality even if they aren't granted,

and

3) Those that the author never wants the assembly to

be granted.

In general, if you have an application comprising of an

assembly named Assem.exe and a module named

Mod.dll. Then the assembly manifest stored within the

PE Assem.exe will not only contain metadata about

the classes, methods etc. contained within the

Assem.exe file but it will also contain references to the

classes, methods etc, exported in the Mod.dll file.

While the module Mod.dll will only contain metadata

describing itself.

The following diagram shows the different ways the

manifest can be stored:

For an assembly with one associated file, the manifest

is incorporated into the PE file to form a single-file

assembly. You can create a multi file assembly with a

standalone manifest file or with the manifest

incorporated into one of the PE files in the assembly.

The Assembly Manifest performs the following

functions:

 Enumerates the files that make up the

assembly.

 Governs how references to the assembly's

types and resources map to the files that

contain their declarations and

implementations.

 Enumerates other assemblies on which the

assembly depends.

 Provides a level of indirection between

consumers of the assembly and the

assembly's implementation details.

 Renders the assembly self-describing.

Microsoft Intermediate Language (MSIL):

When compiling to managed code, the

compiler translates your source code into Microsoft

intermediate language (MSIL), which is a CPU-

independent set of instructions that can be efficiently

converted to native code. MSIL includes instructions

for loading, storing, initializing, and calling methods

on objects, as well as instructions for arithmetic and

logical operations, control flow, direct memory access,

exception handling, and other operations. Before code

can be executed, MSIL must be converted to CPU-

specific code by a just in time (JIT) compiler. Because

the runtime supplies one or more JIT compilers, for

each computer architecture it supports, the same set of

MSIL can be JIT-compiled and executed on any

supported architecture.

When a compiler produces MSIL, it also

produces metadata. The MSIL and metadata are

contained in a portable executable (PE file) that is

based on and extends the published Microsoft PE and

Common Object File Format (COFF) used historically

for executable content. This file format, which

accommodates MSIL or native code as well as

metadata, enables the operating system to recognize

common language runtime images. The presence of

metadata in the file along with the MSIL enables your

code to describe itself, which means that there is no

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[377]

need for type libraries or Interface Definition

Language (IDL). The runtime locates and extracts the

metadata from the file as needed during execution.

Features of SQL-Server
The OLAP Services feature

available in SQL Server version 7.0 is now called SQL

Server 2000 Analysis Services. The term OLAP

Services has been replaced with the term Analysis

Services. Analysis Services also includes a new data

mining component. The Repository component

available in SQL Server version 7.0 is now called

Microsoft SQL Server 2000 Meta Data Services.

References to the component now use the term Meta

Data Services. The term repository is used only in

reference to the repository engine within Meta Data

Services

SQL-SERVER database consist of six type of objects,

They are,

1. TABLE

2. QUERY

3. FORM

4. REPORT

5. MACRO

Table: A database is a collection of data about a

specific topic.

View of Table: We can work with a table in two types,

1. Design View

2. Datasheet View

Design View: To build or modify the structure of a

table we work in the table design view. We can specify

what kind of data will be hold.

Datasheet View: To add, edit or analyses the data

itself we work in tables datasheet view mode.

Query: A query is a question that has to be asked the

data. Access gathers data that answers the question

from one or more table. The data that make up the

answer is either dynaset (if you edit it) or a snapshot

(it cannot be edited).Each time we run query, we get

latest information in the dynaset. Access either

displays the dynaset or snapshot for us to view or

perform an action on it, such as deleting or updating.

Ajax: ASP.NET Ajax marks Microsoft's foray into

the ever-growing Ajax framework market. Simply put,

this new environment for building Web applications

puts Ajax at the front and center of the .NET

Framework.

 Implementation
 Implementation is the stage of the project when

the theoretical design is turned out into a working

system. Thus it can be considered to be the most

critical stage in achieving a successful new system and

in giving the user, confidence that the new system will

work and be effective. The implementation stage

involves careful planning, investigation of the existing

system and it’s constraints on implementation,

designing of methods to achieve changeover and

evaluation of changeover methods.

Modules

1. Firewall Splitting and Matching: In order

to test the build time, data structure size and search

speed behavior, we generated rule-bases of sizes from

1000 to 20000 and built the GEM data structure using

two approaches: 2-part heuristic splitting and 3-part

heuristic splitting, as described .it shows the data

structure size of the unsplit, 2- part splitting, and 3-part

splitting approaches it shows that both splitting

heuristics are very effective in reducing the data

structure size. In earlier simulations we verified that

the firewall’s matching speed is largely unaffected by

the distribution of port numbers (both linear search

and GEM). There is an extensive literature dealing

with router packet matching, usually called “packet

classification”, Thus we believe that GEM may be a

good candidate for use in firewall matching engines.

2. Encryption module: Allows trusted users to access

sensitive information while traversing untrusted

networks, it is highly useful for users. The services and

users are limited in their tunnel traffic.

3. Protection and Detection mode: Easy testing of

new rules in a live environment without disrupting the

current security policy is supported. Rule sets are

applied by deploying them in Protection mode to

enforce secure behavior, permit or deny traffic and

seal web application parameters against

modification. Rule sets are tested by deploying them

in Detection mode to evaluate them against traffic and

log actions without enforcing them.

4. Random Rule Simulation module: On one hand,

these early simulations showed us that the search itself

was indeed very fast: a single packet match took

around 1μsec, since it only required 4 executions of a

binary search in memory. On the other hand, we

learned that the data structure size grew rapidly—and

that the order of fields had little or no effect on this

size. The problem was that since the ranges in the rules

were chosen uniformly, almost every pair of ranges (in

every dimension) had a non-empty intersection. All

these intersections produced a very fragmented space

subdivision, and effectively exhibited the worst-case

behavior in the data structure size. We concluded that

a more realistic rule model is needed.

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[378]

System design
Introduction: Software design sits at the technical

kernel of the software engineering process and is

applied regardless of the development paradigm and

area of application. Design is the first step in the

development phase for any engineered product or

system. The designer’s goal is to produce a model or

representation of an entity that will later be built.

Beginning, once system requirement have been

specified and analyzed, system design is the first of the

three technical activities -design, code and test that is

required to build and verify software. The importance

can be stated with a single word “Quality”. Design is

the place where quality is fostered in software

development. Design provides us with representations

of software that can assess for quality. Design is the

only way that we can accurately translate a customer’s

view into a finished software product or system.

Software design serves as a foundation for all the

software engineering steps that follow. Without a

strong design we risk building an unstable system –

one that will be difficult to test, one whose quality

cannot be assessed until the last stage. During design,

progressive refinement of data structure, program

structure, and procedural details are developed

reviewed and documented. System design can be

viewed from either technical or project management

perspective. From the technical point of view, design

is comprised of four activities – architectural design,

data structure design, interface design and procedural

design.

E – R Diagrams

 The relation upon the system is structure through

a conceptual ER-Diagram, which not only

specifics the existential entities but also the

standard relations through which the system exists

and the cardinalities that are necessary for the

system state to continue.

 The entity Relationship Diagram (ERD) depicts

the relationship between the data objects. The

ERD is the notation that is used to conduct the

date modeling activity the attributes of each data

object noted is the ERD can be described resign a

data object descriptions.

 The set of primary components that are identified

by the ERD are

Data object

Relationships

Attributes

Various types of indicators

The primary purpose of the ERD is to represent data

objects and their relationships.

Data Flow Diagrams: A data flow diagram is

graphical tool used to describe and analyze movement

of data through a system. These are the central tool

and the basis from which the other components are

developed. The transformation of data from input to

output, through processed, may be described logically

and independently of physical components associated

with the system. These are known as the logical data

flow diagrams. The physical data flow diagrams show

the actual implements and movement of data between

people, departments and workstations. A full

description of a system actually consists of a set of data

flow diagrams. Using two familiar notations Yourdon,

Gane and Sarson notation develops the data flow

diagrams. Each component in a DFD is labeled with a

descriptive name. Process is further identified with a

number that will be used for identification purpose.

The development of DFD’S is done in several levels.

Each process in lower level diagrams can be broken

down into a more detailed DFD in the next level. The

lop-level diagram is often called context diagram. It

consists a single process bit, which plays vital role in

studying the current system. The process in the

context level diagram is exploded into other process at

the first level DFD. The idea behind the explosion of

a process into more process is that understanding at

one level of detail is exploded into greater detail at the

next level. This is done until further explosion is

necessary and an adequate amount of detail is

described for analyst to understand the process. Larry

Constantine first developed the DFD as a way of

expressing system requirements in a graphical from,

this lead to the modular design. A DFD is also known

as a “bubble Chart” has the purpose of clarifying

system requirements and identifying major

transformations that will become programs in system

design. So it is the starting point of the design to the

lowest level of detail. A DFD consists of a series of

bubbles joined by data flows in the system.

DFD Symbols:

In the DFD, there are four symbols

1. A square defines a source(originator) or

destination of system data

2. An arrow identifies data flow. It is the pipeline

through which the information flows

3. A circle or a bubble represents a process that

transforms incoming data flow into outgoing data

flows.

4. An open rectangle is a data store, data at rest or a

temporary repository of data

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[379]

 Process that transform the data flow

Source or Destination of data

Data flow

Data Store

Constructing a DFD:

Several rules of thumb are used in drawing DFD’S:

1. Process should be named and numbered for an

easy reference. Each name should be

representative of the process.

2. The direction of flow is from top to bottom and

from left to right. Data traditionally flow from

source to the destination although they may flow

back to the source. One way to indicate this is to

draw long flow line back to a source. An

alternative way is to repeat the source symbol as

a destination. Since it is used more than once in

the DFD it is marked with a short diagonal.

3. When a process is exploded into lower level

details, they are numbered.

4. The names of data stores and destinations are

written in capital letters. Process and dataflow

names have the first letter of each work

capitalized

A DFD typically shows the minimum contents of data

store. Each data store should contain all the data

elements that flow in and out.

Questionnaires should contain all the data elements

that flow in and out. Missing interfaces redundancies

and like is then accounted for often through

interviews.

Silent Features of DFD’s

1. The DFD shows flow of data, not of control loops

and decision are controlled considerations do not

appear on a DFD.

2. The DFD does not indicate the time factor

involved in any process whether the dataflow take

place daily, weekly, monthly or yearly.

3. The sequence of events is not brought out on the

DFD.

Types of Data Flow Diagrams

1. Current Physical

2. Current Logical

3. New Logical

4. New Physical

Current Physical:

 In Current Physical DFD process label

include the name of people or their positions or the

names of computer systems that might provide some

of the overall system-processing label includes an

identification of the technology used to process the

data. Similarly data flows and data stores are often

labels with the names of the actual physical media on

which data are stored such as file folders, computer

files, business forms or computer tapes.

Current Logical:The physical aspects at the system

are removed as much as possible so that the current

system is reduced to its essence to the data and the

processors that transforms them regardless of actual

physical form.

New Logical:This is exactly like a current logical

model if the user were completely happy with the user

were completely happy with the functionality of the

current system but had problems with how it was

implemented typically through the new logical model

will differ from current logical model while having

additional functions, absolute function removal and

inefficient flows recognized.

New Physical:The new physical represents only the

physical implementation of the new system.

Rules Governing the DFD’s

Process

1) No process can have only outputs.

2) No process can have only inputs. If an object has

only inputs than it must be a sink.

3) A process has a verb phrase label.

Data Store
1) Data cannot move directly from one data store to

another data store, a process must move data.

2) Data cannot move directly from an outside source

to a data store, a process, which receives, must

move data from the source and place the data into

data store

3) A data store has a noun phrase label.

Source or Sink
The origin and /or destination of data.

1) Data cannot move direly from a source to sink it

must be moved by a process

2) A source and /or sink has a noun phrase land

Data Flow
1) A Data Flow has only one direction of flow

between symbols. It may flow in both directions

between a process and a data store to show a read

before an update. The later is usually indicated

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[380]

however by two separate arrows since these

happen at different type.

2) A join in DFD means that exactly the same data

comes from any of two or more different

processes data store or sink to a common location.

3) A data flow cannot go directly back to the same

process it leads. There must be atleast one other

process that handles the data flow produce some

other data flow returns the original data into the

beginning process.

4) A Data flow to a data store means update (delete

or change).

5) A data Flow from a data store means retrieve or

use.

A data flow has a noun phrase label more than one data

flow noun phrase can appear on a single arrow as long

as all of the flows on the same arrow move together as

one package.

Dataflow Diagram:

Check

Login

No Yes

Admin User

Upload files
View the files

 and send request

View the request

Send secret key
through image

View the files and extract
the matching key

Packet sending with
encryption and timing

Download the files

Stored on
Database

Register

Input

Output

8.4 Uml Diagrams:

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[381]

Admin

User

Registration

Login

Upload files

View the files
 and send request

View the request
and send seret key

through image

View the files and extract
the matching key

Packet sending with
encryption and timing

Download the file

8.4.1. Use Case Daigram:

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[382]

Register

Check

Login

View the files
 and send request

Upload files

Admin User

View the request View the files

Send secret key
through image

 Extract
the matching key

Packet sending with
encryption and timing

Download the files

8.4.2 Activity Diagram:

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[383]

Admin

Upload files

int id()
varchar filename()
varchar extension
image uploadfiles

upload files()
usermaintenance()

Registration

int id()
varchar name()
varchar username()
varchar password()
varchar email()
varchar phoneno()

insert into regigter()

User

Usersearch

int auid()
int id()
varchar name()
varchar file()
datetime date()
varchar status()

uploadfiles()
Registration()

Keymaintenance

int auid()
int id()
varchar name()
varchar file()
datetime date()
varchar status()
varchar key()
vrchar path()

upload files()
Registration()
Usersearch()

8.4.3 Class Diagram:

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[384]

Admin User

System Database

Login Registration

Upload files View the files
and send request

View the request
and send secret key

`
Extracting the
matching key

Packet sending
with encryption and timing

Download files

User maintenance

8.4.4 Sequence Diagram:

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[385]

Input and output design
INPUT DESIGN: The input design is the link

between the information system and the user. It

comprises the developing specification and procedures

for data preparation and those steps are necessary to

put transaction data in to a usable form for processing

can be achieved by inspecting the computer to read

data from a written or printed document or it can occur

by having people keying the data directly into the

system. The design of input focuses on controlling the

amount of input required, controlling the errors,

avoiding delay, avoiding extra steps and keeping the

process simple. The input is designed in such a way so

that it provides security and ease of use with retaining

the privacy. Input Design considered the following

things:

 What data should be given as input?

 How the data should be arranged or

coded?

 The dialog to guide the operating

personnel in providing input.

 Methods for preparing input validations

and steps to follow when error occur.

 Objectives: 1. Input Design is the process of

converting a user-oriented description of the input into

a computer-based system. This design is important to

avoid errors in the data input process and show the

correct direction to the management for getting correct

information from the computerized system.

2. It is achieved by creating user-friendly screens for

the data entry to handle large volume of data. The goal

of designing input is to make data entry easier and to

be free from errors. The data entry screen is designed

in such a way that all the data manipulates can be

performed. It also provides record viewing facilities.

3. When the data is entered it will check for its validity.

Data can be entered with the help of screens.

Appropriate messages are provided as when needed so

that the user will not be in maize of instant. Thus the

objective of input design is to create an input layout

that is easy to follow.

Output Design: A quality output is one, which meets

the requirements of the end user and presents the

information clearly. In any system results of

processing are communicated to the users and to other

system through outputs. In output design it is

determined how the information is to be displaced for

immediate need and also the hard copy output. It is the

most important and direct source information to the

user. Efficient and intelligent output design improves

the system’s relationship to help user decision-

making.

1. Designing computer output should proceed in an

organized, well thought out manner; the right output

must be developed while ensuring that each output

element is designed so that people will find the system

can use easily and effectively. When analysis design

computer output, they should Identify the specific

output that is needed to meet the requirements.

2.Select methods for presenting information.

3.Create document, report, or other formats that

contain information produced by the system.

The output form of an information system should

accomplish one or more of the following objectives.

 Convey information about past activities,

current status or projections of the

 Future.

 Signal important events, opportunities,

problems, or warnings.

 Trigger an action.

 Confirm an action.

Functional Requirements:

Output Design: Outputs from computer systems are

required primarily to communicate the results of

processing to users. They are also used to provide a

permanent copy of the results for later consultation.

The various types of outputs in general are:

 External Outputs, whose destination is outside the

organization.

 Internal Outputs whose destination is within

organization and they are the

 User’s main interface with the computer.

 Operational outputs whose use is purely within

the computer department.

 Interface outputs, which involve the user in

communicating directly with

Output Definition

The outputs should be defined in terms of the

following points:

 Type of the output

 Content of the output

 Format of the output

 Location of the output

 Frequency of the output

 Volume of the output

 Sequence of the output

It is not always desirable to print or display data as it

is held on a computer. It should be decided as which

form of the output is the most suitable.

For Example

 Will decimal points need to be inserted

 Should leading zeros be suppressed.

Output Media:In the next stage it is to be decided that

which medium is the most appropriate for the output.

The main considerations when deciding about the

output media are:

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[386]

 The suitability for the device to the particular

application.

 The need for a hard copy.

 The response time required.

 The location of the users

 The software and hardware available.

Keeping in view the above description the project is to

have outputs mainly coming under the category of

internal outputs. The main outputs desired according

to the requirement specification are: The outputs were

needed to be generated as a hot copy and as well as

queries to be viewed on the screen. Keeping in view

these outputs, the format for the output is taken from

the outputs, which are currently being obtained after

manual processing. The standard printer is to be used

as output media for hard copies.

Input Design :Input design is a part of overall system

design. The main objective during the input design is

as given below:

 To produce a cost-effective method of input.

 To achieve the highest possible level of accuracy.

 To ensure that the input is acceptable and

understood by the user.

Input Stages:The main input stages can be listed as

below:

 Data recording

 Data transcription

 Data conversion

 Data verification

 Data control

 Data transmission

 Data validation

 Data correction

Input Types:It is necessary to determine the various

types of inputs. Inputs can be categorized as follows:

 External inputs, which are prime inputs for the

system.

 Internal inputs, which are user communications

with the system.

 Operational, which are computer department’s

communications to the system?

 Interactive, which are inputs entered during a

dialogue.

Input Media: At this stage choice has to be made

about the input media. To conclude about the input

media consideration has to be given to;

 Type of input

 Flexibility of format

 Speed

 Accuracy

 Verification methods

 Rejection rates

 Ease of correction

 Storage and handling requirements

 Security

 Easy to use

 Portability

Keeping in view the above description of the input

types and input media, it can be said that most of the

inputs are of the form of internal and interactive. As

Input data is to be the directly keyed in by the user, the

keyboard can be considered to be the most suitable

input device.

Error Avoidance: At this stage care is to be taken to

ensure that input data remains accurate form the stage

at which it is recorded upto the stage in which the data

is accepted by the system. This can be achieved only

by means of careful control each time the data is

handled.

Error Detection: Even though every effort is make to

avoid the occurrence of errors, still a small proportion

of errors is always likely to occur, these types of errors

can be discovered by using validations to check the

input data. Data Validation: Procedures are designed

to detect errors in data at a lower level of detail. Data

validations have been included in the system in almost

every area where there is a possibility for the user to

commit errors. The system will not accept invalid

data. Whenever an invalid data is keyed in, the system

immediately prompts the user and the user has to again

key in the data and the system will accept the data only

if the data is correct. Validations have been included

where necessary. The system is designed to be a user

friendly one. In other words the system has been

designed to communicate effectively with the user.

The system has been designed with pop up menus.

User Interface Design: It is essential to consult the

system users and discuss their needs while designing

the user interface:

User Interface Systems Can Be Broadly Classified

As:

1. User initiated interface the user is in charge,

controlling the progress of the user/computer

dialogue. In the computer-initiated interface, the

computer selects the next stage in the interaction.

2. Computer initiated interfaces

In the computer initiated interfaces the

computer guides the progress of the user/computer

dialogue. Information is displayed and the user

response of the computer takes action or displays

further information.

User Initiated Interfaces: User initiated interfaces

fall into tow approximate classes:

1. Command driven interfaces: In this type of

interface the user inputs commands or queries

which are interpreted by the computer.

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[387]

2. Forms oriented interface: The user calls up an

image of the form to his/her screen and fills in the

form. The forms oriented interface is chosen

because it is the best choice.

Computer-Initiated Interfaces: The following

computer – initiated interfaces were used:

1. The menu system for the user is presented with a

list of alternatives and the user chooses one; of

alternatives.

2. Questions – answer type dialog system where the

computer asks question and takes action based on

the basis of the users reply.

Right from the start the system is going to be menu

driven, the opening menu displays the available

options. Choosing one option gives another popup

menu with more options. In this way every option

leads the users to data entry form where the user can

key in the data.

Error Message Design: The design of error messages

is an important part of the user interface design. As

user is bound to commit some errors or other while

designing a system the system should be designed to

be helpful by providing the user with information

regarding the error he/she has committed. This

application must be able to produce output at different

modules for different inputs.

Performance Requirements: Performance is

measured in terms of the output provided by the

application. Requirement specification plays an

important part in the analysis of a system. Only when

the requirement specifications are properly given, it is

possible to design a system, which will fit into

required environment. It rests largely in the part of the

users of the existing system to give the requirement

specifications because they are the people who finally

use the system. This is because the requirements have

to be known during the initial stages so that the system

can be designed according to those requirements. It is

very difficult to change the system once it has been

designed and on the other hand designing a system,

which does not cater to the requirements of the user, is

of no use.

The requirement specification for any system can be

broadly stated as given below:

 The system should be able to interface with the

existing system

 The system should be accurate

 The system should be better than the existing

system

The existing system is completely dependent on the

user to perform all the duties.

System testing
SYSTEM TESTING : The purpose of

testing is to discover errors. Testing is the process of

trying to discover every conceivable fault or weakness

in a work product. It provides a way to check the

functionality of components, sub assemblies,

assemblies and/or a finished product. It is the process

of exercising software with the intent of ensuring that

the Software system meets its requirements and user

expectations and does not fail in an unacceptable

manner. There are various types of test. Each test type

addresses a specific testing requirement.

Types of Tests :

Unit Testing: Unit testing involves the design of test

cases that validate that the internal program logic is

functioning properly, and that program inputs produce

valid outputs. All decision branches and internal code

flow should be validated. It is the testing of individual

software units of the application .it is done after the

completion of an individual unit before integration.

This is a structural testing that relies on knowledge of

its construction and is invasive. Unit tests perform

basic tests at component level and test a specific

business process, application, and/or system

configuration. Unit tests ensure that each unique path

of a business process performs accurately to the

documented specifications and contains clearly

defined inputs and expected results.

Integration Testing:
 Integration tests are designed to test

integrated software components to determine if they

actually run as one program. Testing is event driven

and is more concerned with the basic outcome of

screens or fields. Integration tests demonstrate that

although the components were individually

satisfaction, as shown by successfully unit testing, the

combination of components is correct and consistent.

Integration testing is specifically aimed at exposing

the problems that arise from the combination of

components.

Functional Test:
 Functional tests provide systematic

demonstrations that functions tested are available as

specified by the business and technical requirements,

system documentation, and user manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of valid input

must be accepted.

Invalid Input : identified classes of invalid input

must be rejected.

Functions : identified functions must be

exercised.

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[388]

Output : identified classes of

application outputs must be exercised.

Systems/Procedures: interfacing systems or

procedures must be invoked.

 Organization and preparation of functional tests is

focused on requirements, key functions, or special test

cases. In addition, systematic coverage pertaining to

identify Business process flows; data fields,

predefined processes, and successive processes must

be considered for testing. Before functional testing is

complete, additional tests are identified and the

effective value of

System Test:

 System testing ensures that the entire integrated

software system meets requirements. It tests a

configuration to ensure known and predictable results.

An example of system testing is the configuration

oriented system integration test. System testing is

based on process descriptions and flows, emphasizing

pre-driven process links and integration points.

White Box Testing: White Box Testing is a testing in

which in which the software tester

has knowledge of the inner workings, structure and

language of the software, or at least its purpose. It is

purpose. It is used to test areas that cannot be reached

from a black box level.

Black Box Testing:

 Black Box Testing is testing the software without

any knowledge of the inner workings, structure or

language of the module being tested. Black box tests,

as most other kinds of tests, must be written from a

definitive source document, such as specification or

requirements document, such as specification or

requirements document. It is a testing in which the

software under test is treated, as a black box .you

cannot “see” into it. The test provides inputs and

responds to outputs without considering how the

software works.

Unit Testing: Unit testing is usually conducted as part

of a combined code and unit test phase of the software

lifecycle, although it is not uncommon for coding and

unit testing to be conducted as two distinct phases.

Test strategy and approach
 Field testing will be performed manually and

functional tests will be written in detail.

Test objectives

 All field entries must work properly.

 Pages must be activated from the identified

link.

 The entry screen, messages and responses

must not be delayed.

Features to be tested

 Verify that the entries are of the correct format

 No duplicate entries should be allowed

 All links should take the user to the correct

page.

10.3 Integration Testing: Software integration testing

is the incremental integration testing of two or more

integrated software components on a single platform

to produce failures caused by interface defects. The

task of the integration test is to check that components

or software applications, e.g. components in a

software system or – one step up – software

applications at the company level – interact without

error.

Test Results: All the test cases mentioned above

passed successfully. No defects encountered.

Acceptance Testing: User Acceptance

Testing is a critical phase of

any project and requires

significant participation by

the end user. It also ensures

that the system meets the

functional requirements.
Test Results:

 All the test cases mentioned above passed

Successfully. No defects encountered.

Conclusion
 We have seen that the GEM algorithm is

an efficient and practical algorithm for firewall packet

matching. We implemented it successfully, and tested

its packet-matching speeds. GEM’s matching speed is

far better than the naive linear search, and it is able to

increase the throughput by an order of magnitude. On

rule-bases generated according to realistic statistics,

GEM’s space complexity is well within the

capabilities of modern hardware. Thus we believe that

GEM may be a good candidate for use in firewall

matching engines.

References
1. User Interfaces in C#: Windows Forms and

Custom Controls by Matthew MacDonald.

2. Applied Microsoft® .NET Framework

Programming (Pro-Developer) by Jeffrey

Richter.

3. Practical .Net2 and C#2: Harness the Platform,

the Language, and the Framework by Patrick

Smacchia.

4. Data Communications and Networking, by

Behrouz A Forouzan.

5. Computer Networking: A Top-Down

Approach, by James F. Kurose.

http://www.ijesrt.com/

[Harish, 3(8): August, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[389]

6. Operating System Concepts, by Abraham

Silberschatz.

7. Amichai-Hamburger, Y., Fine, A., &

Goldstein, A. (2004). The impact of Internet

interactivity and need for closure on

consumer preference. Computers in Human

Behavior, 20, 103-117.

8. Balabanis, G., Reynolds, N., & Simintiras, A.

(2006). Bases of e-store loyalty: Perceived

switching barriers and satisfaction. Journal of

Business Research, 59, 214-224.

9. F. Baboescu, S. Singh, and G. Varghese,

“Packet classification for core routers: Is

there an alternative to cams,” in Proc. IEEE

INFOCOM, 2003

10. F. Baboescu and G. Varghese, “Scalable

packet classification,” in Proc. ACM

SIGCOMM, 2001, pp. 199–210.

11. N. Bar-Yosef and A. Wool, “Remote

algorithmic complexity attacks against

randomized hash tables,” in Proc.

International Conference on Security and

Cryptography (SECRYPT), Barcelona,

Spain, Jul. 2007, pp. 117–124.

12. M. M. Buddhikot, S. Suri, and M.

Waldvogel, “Space decomposition

techniques for fast Layer-4 switching,” in

Protocols for High Speed Networks IV, Aug.

1999, pp. 25–41.

13. W. R. Cheswick, S. M. Bellovin, and A.

Rubin, Firewalls and Internet Security:

Repelling the Wily Hacker, 2nd ed. Addison-

Wesley, 2003.

14. M. Christiansen and E. Fleury, “Using

interval decision diagrams for packet

filtering,” 2002,

http://www.cs.auc.dk/_fleury/publications.ht

ml.

15. E. Cohen and C. Lund, “Packet classification

in large ISPs: Design and evaluation of

decision tree classifiers,” in Proc. ACM

SIGMETRICS. New York, NY, USA: ACM

Press, 2005, pp. 73–84.

16. S. Crosby and D. Wallach, “Denial of service

via algorithmic complexity attacks,” in

Proceedings of the 12th USENIX Security

Symposium, August 2003, pp. 29–44.

17. M. de Berg, M. van Kreveld, and M.

Overmars, Computational Geometry:

Algorithms and Applications, 2nd ed.

Springer-Verlag, 2000.

http://www.ijesrt.com/

